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1. Introduction 
 
There are many techniques for the exact analytic evaluation of indefinite integrals. For example, 
Zwillinger provides a solid list of methods in Section III of his Handbook of Integration. In any such list, 
the very first method is usually "change of variables" by means of a "substitution". To take a trivial 
example which establishes the variable names we use below, consider how the substitution t = sinx helps 
in evaluating a trigonometric integral,   
 
 t(x) = sinx  dt = cosx dx 

  ∫
 

 x sinx cosx dx  =  ∫
 

t(x) t dt  = (1/2) t2|t(x)  = (1/2) sin2x  .    (1.1) 

 
The phrase "Euler substitutions" refers to three substitutions used for evaluating certain integrals 
involving powers of x along with powers of the radical a+bx+cx2 . These substitutions are briefly 
reviewed in Section 2.25 (p 92) of Gradshteyn and Ryzhik [GR7]. Wiki suggests that these substitutions 
appears in many Russian calculus texts, and we have found them mentioned in a book by Piskunov. 
 
Our very elementary purpose in this document is to flesh out the details of using these Euler substitutions 
and to state the results in a systematic manner.  
 

As an illustration, ∫dx 1/ a+bx+cx2 is evaluated using each of the substitutions. The results are then 

transformed into other forms, and all the results are collected in (7.17). This integral is of particular 
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interest to the author because it is used in Goldstein's Classical Mechanics to derive equations for 
planetary orbits, and there seems to be a benign sign error in that development as noted below. Physicists 
spend a lot of time worrying about signs of things. Sometimes such errors are related to confusion about 
how branch cuts are "taken off" for functions of a complex variable, the choice of Riemann sheets, and 
other esoteric matters, but more often than not the sign error is caused by a trivial mistake in grade school 
algebra.  
 
A certain class of functions of t are called rational functions and have the form 
 

 R(t) = 
poly1(t)
poly2(t)           (1.2) 

 
where the numerator and denominator are just polynomials of t with non-negative powers. In fact 
negative powers are allowed and can be cleared by multiplying top and bottom by some tn . Any function 
having the form R(t) can easily be integrated using the method of partial fractions, and this topic is 
clearly outlined in Section 2.10 of GR7. In the discussion below, the Euler substitutions result in 
integrands of the form R(t) and then we know that the integration from that point on is just turning a 
crank. 
 
Rational functions of two variables x and y are defined analogously to the above,  
 

 R(x,y) = 
poly1(x,y)
poly2(x,y)           (1.3) 

 
where now the numerator and denominator are polynomials in x and y, such as  3x2 - 2xy9 + 4 - y.  
 
The Euler substitutions apply to a class of functions of a single variable x which have this form 
 
 f(x) = R(x, a+bx+cx2 ) .         (1.4) 
 
For example, a typical such function might be 
 

 R(x, a+bx+cx2 )  =  
Ax a+bx+cx2  + Bx7( a+bx+cx2 )3 + x3

 2x3 a+bx+cx2  + x2 
   .    (1.5) 

 
Since the numerator terms can be treated separately, one can limit one's interest to the following form,  
 

 R(x, a+bx+cx2 )   = 
xm( a+bx+cx2 )n

poly(x, a+bx+cx2 )
  .         (1.6) 

 
As noted, the specific example we shall study is the following, shown here in one of its forms (4.9),  
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 ∫dx 
1

a+bx+cx2 
  =  

1
c 

  ln [ 2cx + b + 2 c a+bx+cx2  ]   + constant     c > 0  .  (1.7) 

 
The above example serves as a good model to look at while reading the comments below concerning the 
general integrand shown in (1.4) . 
 
Comments: 

• In general, any indefinite integral should really be written ∫
 

 x dx f(x) = F(x) + constant where the 

constant is arbitrary. One can always test a candidate F(x) by computing dF/dx to see if the result is f(x). 
This task is made easy using Maple or another computer calculus program. 
 
• When there are parameters such as a,b,c shown above, that integration constant can be any function 
g(a,b,c) which is of course not a function of x.  
  
• We shall use the symbol A =•  B to mean A = B + constant in the above sense. Thus we can write 
 

 ∫dx 
1

a+bx+cx2 
  =•   

1
c 

  ln [ 2cx + b + 2 c a+bx+cx2  ] 

             =•   
1
c 

  ln [ 
 2cx + b + 2 c a+bx+cx2 

4ac-b2 
 ] .    (1.8) 

 
On the second line we have added a denominator which in effect creates the additive constant g(a,b,c) = 
- (1/ c ) ln( 4ac-b2 ). Both forms shown above are "correct" and well-defined when c > 0 and 4ac-b2> 0.  
 
• Since ln(-z) = ln(-1) + ln(z) = ±iπ + ln(z), one can always write ln(-z) =•  ln(z).  
 
• If one thinks of x having units of distance L, then dim(x) = L, dim(a) = L2, dim(b) = L and dim(c) = 1 
make the integral be dimensionless. Then the second form above involves the log of a dimensionless 
ratio, whereas the first form does not, somewhat clarifying the dimensionless nature of the integral.   
 
• As discussed more below, a+bx+cx2 is real for certain ranges of a,b,c,x and one can imagine that the 
integral being evaluated is over a range of x where a+bx+cx2  is real. One normally thinks of a,b,c as 
real parameters.  
 
• Once an integral has been evaluated for "reasonable" values of the parameters like a,b,c, one can extend 
one or more of these parameters to the complex plane allowing one to analytically continue both sides of 
an integral evaluation. We shall give an example below in Section 7.  
 
Having stated these general comments, we now look specifically at the object a+bx+cx2 .  
 



  4 

2. Comments about R = a + bx + cx2 
 
The letters a,b,c are defined consistently with GR7. It is probably more standard to write ax2+bx+c, in 
which case one has the familiar rote solution for the roots [-b ± b2-4ac ]/(2a), so in our current context 
one must remember that in fact the roots of a+bx+cx2= 0 are given by 
 
 α± ≡  [-b ± b2-4ac ]/(2c) .          (2.1) 
 
The quantity b2-4ac is often called "the discriminant". GR7 define Δ to be the negative of this 
discriminant,  
 
 Δ  ≡ 4ac - b2  .          (2.2) 
 
Also consistent with GR7 we define R by  
 
 R ≡  a+bx+cx2  = c [ x2 + (b/c)x + (a/c) ]  = c(x-α+)(x-α-)      (2.3) 
 
and it is for this reason that we have used R above for the ratio of polynomials. Note that α± are the roots 
of R for c > 0, for c = |c|eiθ , and for c < 0.  
 
Special case:   
 
 b2 = 4ac (Δ = 0)  ⇒  α±  = -b/(2c) ⇒   R = c(x-α+)2 ⇒  R  = c [x + b/(2c)]   (2.4) 
 
Geometry 
 
If b2 - 4ac > 0 then the roots in (2.1) are real. This means that the graphed function f(x) = a + bx + cx2 

has two intersections with the x axis.  
 If c > 0, the parabola cups up. Therefore to the right of the upper root, x > α+, one has a + bx + cx2 > 
0 and so a+bx+cx2 is real and well defined. It is also real for x < α-.  
 If c < 0, the parabola cups down. In this case a+bx+cx2  is real and well defined for α- < x < α+. By 
well defined we simply mean that the square root implies a positive real number and we don't worry about 
branches of the square root function.  
 
When talking about integrals involving a+bx+cx2 , it seems best to start with an integral over a range of 
x where a + bx + cx2 is positive, so then a+bx+cx2 is real and positive. There are four cases of interest: 
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Case 1:   c > 0,  b2- 4ac > 0  (real roots), cups up,  x > α+  or x < α- to have real a+bx+cx2  
 
Case 2:   c > 0,  b2- 4ac < 0 (imag roots), cups up, all real values of x give real a+bx+cx2  
 
Case 3:   c < 0,  b2- 4ac > 0  (real roots), cups down, must have α- < x < α+ to have real a+bx+cx2  
 
Case 4:  c < 0,  b2- 4ac < 0  (imag roots), cups down, no real value of x gives real a+bx+cx2  (2.5) 
 

      (2.6) 
 
The red bars show the range of x for which a+bx+cx2 is real.  
 
We shall initially work in Case 2 below. This means c > 0 and  b2- 4ac < 0.  
 
3. A substitution that fails, then three that succeed: A,B and C 
 
One's first inclination in evaluating integrals including a+bx+cx2 might be to make the substitution 
 

 t(x) = a+bx+cx2           (3.1) 
 
so that 
 

 R(x, a+bx+cx2 ) →  R(x(t),t)  .        (3.2) 
 
But,  
 

 t2 =  a+bx+cx2  ⇒ cx2 + bx + (a-t2) = 0 
 

 ⇒  x(t) =  
-b ± b2 - 4c(a-t2) 

2c   .        (3.3) 
 
The result then is,  
 

 R(x, a+bx+cx2 ) →  R(
-b ± b2 - 4c(a-t2) 

2c  , t)  .      (3.4) 
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The goal is to remove square roots from the integrand, but this substitution just replaces one square root 
with another square root and is thus not very useful, so we reject this substitution.  
 
We are then led to three substitutions which are credited to Leonhard (brave lion) Euler (1707-1783) and 
are now known as "the Euler substitutions". There is some disagreement about how these are numbered 
1,2 and 3 so we instead call them substitutions A,B and C favoring the ordering of Piskunov :  
 
       Piskunov GR7  Boyadzhiev 
 A  t + c x  = a+bx+cx2   1  2  1 
 B  xt + a   = a+bx+cx2   2  1  3 
 C  t (x-α)    = a+bx+cx2   3  3  2  (3.5) 
 
Euler below is squinting at eiπ + 1 = 0 written on his blackboard and is wondering what it all means. 
 

            (3.6) 
       https://en.wikipedia.org/wiki/Leonhard_Euler  
 
Gradshteyn and Ryzhik 
 
Another of Zwillinger's "methods" for doing an indefinite integral is "looking it up" in a table of integrals. 
The astounding Table of Integrals, Series, and Products associated with Gradshteyn and Ryzhik contains, 
as a small fraction of its content, about 200 pages of indefinite integrals of elementary functions which 
have accumulated over three centuries. Currently in the editorial hands of Dan Zwillinger and Victor 
Moll, the book is in its 8th edition, though we continue to use the 7th edition. During the period of each 
edition, new integrals and errata for old integrals are collected to be incorporated into the next edition. 
The first edition was published by Russian mathematician Ryzhik in 1941, and he was joined by 
Gradshteyn in 1951 for the 3rd edition, see wiki.  

https://en.wikipedia.org/wiki/Leonhard_Euler�
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4. Substitution A 
 
Instead of using the substitution (3.1), consider  
 
 t(x)   =  a+bx+cx2  - c x  or   t + c x  = a+bx+cx2 .   (4.1) 
 
When we finish this section we can replace c → - c  everywhere and thereby generate an alternate 
result. One now has,  
 
 a + bx + cx2 = t2  + 2 c t x + cx2  .        (4.2) 
 
The key idea is that the two cx2 terms cancel out, giving 
 
 a + bx = t2 + 2 c t x ⇒ (b - 2 c t )x  = (t2-a) ⇒  
 

 x(t)  =  
t2-a

b - 2 c t
  ,           (4.3) 

 
 an expression with no messy square roots, unlike (3.3). Then,  
 

 a+bx+cx2  =  t + c x  =  t + c 
t2-a

b - 2 c t
   =  

tb - 2 c t2

b - 2 c t
  +  

c t2 - c a
b - 2 c t

    

    = 
- c t2 + bt - c a 

b - 2 c t
  .         (4.4) 

 
Then our general replacement becomes 
 

 R(x, a+bx+cx2 ) →  R( 
t2-a

b - 2 c t
 , 

- c t2 + bt - c a 
b - 2 c t

 ) .      (4.5) 

 
One may then compute 
 

 
dx
dt   =  

d
dt (

t2-a
b - 2 c t

 )  =  
 (b - 2 c t )(2t) - (t2-a) (-2 c ) 

(b - 2 c t )2 
   = 

2bt - 4 c t2 + 2 c t2- 2a c  
(b - 2 c t )2 

 

 

      =  2 
 bt - ct2 - a c   

(b - 2 c t )2 
 

 
so that 
 

 dx = 2 
 - c t2 + bt - a c  

(b - 2 c t )2 
 dt .        (4.6) 
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Our integral evaluation then becomes 
 

  ∫
 

 x dx R(x, a+bx+cx2 )  =  ∫
 

t(x) dt  2 
 - c t2 + bt - a c  

(b - 2 c t )2 
 *  R( 

t2-a
b - 2 c t

 , 
- c t2 + bt - c a 

b - 2 c t
 ) 

   where  t(x)   =  a+bx+cx2  - c x   .       (4.7) 
 
Notice that there are no messy square roots anywhere in the dt integrand. The integrand is now a rational 
function in the variable t :  integrand = poly1(t)/poly2(t).  
 
As noted earlier, one may replace c → - c  (and c → c) to obtain the following alternative form,  
 

  ∫
 

 x dx R(x, a+bx+cx2 )  =  ∫
 

t(x) dt  2 
 c t2 + bt + a c  

(b + 2 c t )2 
 * R( 

t2-a
b + 2 c t

 , 
c t2 + bt + c a 

b + 2 c t
 ) 

   where  t(x)   =  a+bx+cx2  + c x   .       (4.8) 
 
Example:  Let R(x, a+bx+cx2 ) = 1/ a+bx+cx2 . Then using (4.8),  
 

  ∫
 

 x dx  
1

a+bx+cx2 
  =  ∫

 

t(x) dt  2 
 c t2 + bt + a c  

(b + 2 c t )2 
 * 

b + 2 c t
c t2 + bt + c a

  

 

   = 2 ∫
 

t(x) dt  
1

b + 2 c t
    =   

1
c 

  ∫
 

t(x) dt 
1

t + [b/2 c ]
  

 

  = 
1
c 

  ln (t + [b/2 c ] }|t(x) 

 

  = 
1
c 

 ln ( a+bx+cx2  + c x +  [b/2 c ]      = 
1
c 

 ln ( R  + c x +  [b/2 c ] ) 

 

  =•   
1
c 

  ln [2 c R  + 2cx + b ]        (4.9) 

 
in agreement with (1.7) stated earlier without proof. To get the last line, we multiplied by 2 c  top and 
bottom inside the log, then dropped the constant term - (1/ c ) ln (2 c ), hence the =•  sign .  
 
From (4.7) we would have gotten instead 
 

  ∫
 

 x dx  
1

a+bx+cx2 
  =   - 

1
c 

 ln [- 2 c R  + 2cx + b ]  .     (4.10) 

 
These seemingly different results are both valid since they differ by a constant independent of x :  
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1
c 

  ln [2 c R  + 2cx + b ]  -  {  - 
1
c 

 ln [- 2 c R  + 2cx + b ]  } 

 

 = 
1
c 

 ln [ (2 c R  + 2cx + b)(- 2 c R  + 2cx + b) ]  = 
1
c 

  ln [ (2cx+b)2 - 4cR ] 

 

 = 
1
c 

  ln [ (2cx+b)2 - 4c(a+bx+cx2 ]   = 
1
c 

  ln [ 4c2x2 + 4cbx + b2 - 4ca + 4cbx - 4c2x2 ]  

 

 = 
1
c 

  ln [ b2 - 4ca ] .          (4.11) 

 
We then write,  
 

  ∫
 

 x dx  
1

a+bx+cx2 
 =•   

1
c 

  ln [2 c R  + 2cx + b ]   =•    - 
1
c 

 ln [- 2 c R  + 2cx + b ] . (4.12) 

 
Just for the record, Maple comes up with the first of these forms (again apart from a constant), 
 

       (4.13) 
which is   
    

  
1
c 

 ln [ 
b+2cx + 2 c R 

2 c 
 ]  = 

1
c 

 ln [2 c R  + 2cx + b ]  - 
1
c 

  ln (2 c ) .  

 
In the special case that 4ac = b2 we know from (2.4) that R  = c [x +  b/(2c)] so (4.9) becomes 
 
 ∫

 

 x dx  
1
R 

       =•   
1
c 

 ln ( 2 c R  + 2cx + b )  

   =  
1
c 

 ln ( 2 c [ c (x + b/(2c)] + 2cx + b ) 

   =  
1
c 

 ln (2cx +b + 2cx + b )  = 
1
c 

 ln (4cx +2b ) 

   =•   
1
c 

 ln (2cx +b )  .    c > 0, 4ac = b2   (4.14) 
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5. Substitution B 
 
Here we mimic the previous section as closely as possible, using matching equation numbers.  
 
Instead of using the substitution (3.1), consider  
 
 t(x)   = ( a+bx+cx2  - a ) / x  or    xt + a   = a+bx+cx2 .   (5.1) 
 
When we finish this section we can replace a → - a  everywhere and thereby generate an alternate 
result. One now has,  
 
 a + bx + cx2 = x2t2  + 2xt a + a  .        (5.2) 
 
The key idea is that the two a terms cancel out, giving 
 
 bx + cx2 = x2t2 + 2 a x t   ⇒ b + cx = xt2 + 2 a t ⇒  x(c-t2) =   2 a t - b   ⇒ 
 

 x(t) = 
2 a t - b

c-t2   ,          (5.3) 

 
 an expression with no messy square roots, unlike (3.3). Then,  
  

 a+bx+cx2  =  xt + a  =  
2 a t - b

c-t2   t  + a   =  
(2 a t - b)t

c-t2    +  
a (c-t2)
c-t2   

 

    =  
a t2 - bt + a c

c-t2   .         (5.4) 

 
Then our general replacement becomes 
 

 R(x, a+bx+cx2 ) →  R( 
2 a t - b

c-t2  , 
a t2 - bt + a c

c-t2  )  .     (5.5) 

 
One may then compute 
 

 
dx
dt   =  

d
dt ( 

2 a t - b
c-t2  )  = 

(c-t2)2 a  -  (2 a t - b)(-2t)
(c-t2)2    = 

2c a - 2t2 a  + 4t2 a -2bt 
(c-t2)2   

 

  = 2
a t2 - bt + a c

(c-t2)2   

so that 
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 dx = 2 
a t2 - bt + a c

(c-t2)2   dt .        (5.6) 

 
Our integral evaluation then becomes 
 

  ∫
 

 x dx R(x, a+bx+cx2 )  =  ∫
 

t(x) dt  2 
a t2 - bt + a c

(c-t2)2   * R( 
2 a t - b

c-t2  , 
a t2 - bt + a c

c-t2  ) 

   where  t(x)   =  ( a+bx+cx2  - a ) / x   .       (5.7) 
 
Notice that there are no messy square roots anywhere in the dt integrand. The integrand is now a rational 
function in the variable t :  integrand = poly1(t)/poly2(t).  
  
As noted earlier, one may replace a → - a  (and a → a) to obtain the following alternative form.  
 

  ∫
 

 x dx R(x, a+bx+cx2 )  =  ∫
 

t(x) dt  2 
- a t2 - bt - a c

(c-t2)2   * R( 
-2 a t - b

c-t2  , 
- a t2 - bt - a c

c-t2  ) 

   where  t(x)   =  ( a+bx+cx2  + a ) / x   .       (5.8) 
 
Example:  Let R(x, a+bx+cx2 ) = 1/ a+bx+cx2 . Then using (5.8),  
 

  ∫
 

 x dx  
1

a+bx+cx2 
  =  ∫

 

t(x) dt  2 
- a t2 - bt - a c

(c-t2)2   * 
c-t2

- a t2 - bt - a c
  

 

  = 2  ∫
 

t(x) dt  
1

c-t2   = -2  ∫
 

t(x) dt  
1

t2-c  . 

 
Maple kindly computes this integral,  
 

    (5.8a) 
so we continue,  
 

  ∫
 

 x dx  
1

a+bx+cx2 
  = + 

2
c 

  tanh-1 (
t
c 

 )|t = t(x) 

 

    =  
2
c 

  tanh-1
[ ( a+bx+cx2  + a ) / x]

c 
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    = 
2
c 

 tanh-1(
R + a  
x c 

 ) .         (5.9) 

 
From (5.7) we would have instead found 
 

  ∫
 

 x dx  
1

a+bx+cx2 
  = 

2
c 

 tanh-1(
R - a  
x c 

 ) .       (5.10) 

 
One might reasonably wonder how both these results can be correct since there is a sign difference. The 
answer again is that the two forms differ by a constant independent of x. To show this, one can use 
 

 tanh-1 u  = 
1
2  ln ( 

1+u
1-u  )   |u| < 1   // Spiegel 8.57   (5.11) 

with  

 u = 
R - a  
x c 

  ⇒ 1 ± u = 
x c 
x c 

  ± 
R - a  
x c 

   =  
x c ±( R - a )

x c 
  

 
so that 
 

 tanh-1(
R - a  
x c 

 )  = 
1
2  ln [ 

x c  + R  - a 
x c  -  R + a  

 ]  

 

 tanh-1(
R + a  
x c 

 )  = 
1
2  ln [ 

x c  + R  + a 
x c  -  R - a  

 ]  .  

 
The difference between these two arctangents is then 
 

 tanh-1(
R + a  
x c 

 )  -  tanh-1(
R - a  
x c 

 )   =  
1
2  ln [ 

x c  + R  + a 
x c  -  R - a  

 ] - 
1
2  ln [ 

x c  + R  - a 
x c  -  R + a  

 ] 

 

  = 
1
2  ln [ 

x c  + R  + a 
x c  -  R - a  

  * 
x c  - R  + a 
x c  +  R - a  

  ]   =  
1
2  ln [ 

(x c + a )2- R
(x c - a )2 - R

 ] 

 

  =  
1
2  ln [ 

x2c + a c x + a - (a + bx + cx2)
x2c - a c x + a - (a + bx + cx2)

 ]   =   
1
2  ln [ 

 a c x - bx
- a c x - bx

 ]   

 

  =  
1
2  ln [ 

 a c  - b
- a c  - b

  ] .          

 
Therefore 
 

 
2
c 

 tanh-1(
R + a 
x c 

 )  -  
2
c 

 tanh-1(
R - a 
x c 

 )  = 
2
c 

   
1
2  ln [ 

 a c  - b
- a c  - b

  ]    (5.12) 
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which is a constant independent of x. Therefore we write 
 

  ∫
 

 x dx  
1

a+bx+cx2 
   =•    

2
c 

 tanh-1(
R + a  
x c 

 )   =•    
2
c 

 tanh-1(
R - a  
x c 

 )   (5.13) 

 
and we have now accumulated two more forms for this integral. Both forms can be verified by direct 
differentiation as Maple shows,  
 

   (5.14) 
 
In the Maple language, a colon suppresses output from a command, while symbol % refers to the last 
computed quantity. In the diff(J1,x) line we suppress output and simplify to get 1/ R , but for J2 we show 
the typically messy expression Maple generates, followed by the simplified result.  
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6. Substitution C 
 
Rename the roots of R = 0 to be α = α- and β = α+ . Recall that  
 
  a+bx+cx2  = c(x-α)(x-β)  .         (2.3) 
 
Now, instead of using the substitution (3.1), consider  
 

 t(x) = a+bx+cx2 / (x-α)  =  c(x-α)(x-β) / (x-α)  =  c  
x - β
x - α   .    (6.1) 

 
When we finish this section we can do α ↔ β everywhere and thereby generate an alternate result.  
 
Solving for x one finds (there is no equation (6.2) because we are matching the previous sections),  
 
 t2 = c (x-β)/(x-α) ⇒ t2(x-α) = c(x-β)     ⇒    x(t2-c) = (αt2- cβ)   ⇒ 
 

 x(t) = 
αt2- cβ

t2-c   ,          (6.3) 

 
 an expression with no messy square roots, unlike (3.3). Then,  
 

 a+bx+cx2   =  (x-α)t  =  (
αt2- cβ

t2-c  -α)t  =  
t(αt2- cβ)

t2-c    -  
αt(t2-c)

t2-c     =    
αt3 - cβt - αt3 + cαt

t2-c   

 

                 = 
c(α-β)t

t2-c   .         (6.4) 

 
Then our general replacement becomes 
 

 R(x, a+bx+cx2 ) →  R(
αt2- cβ

t2-c  , 
c(α-β)t

t2-c  )  .       (6.5) 

 
One may then compute 
  

 
dx
dt   =  

d
dt (

αt2- cβ
t2-c  )  =  

(t2-c)2αt - (αt2-cβ)2t
(t2-c)2    =  

2αt3 - 2αct - 2αt3+ 2cβt
(t2-c)2     =  2 

- αct + cβt
(t2-c)2    

 

      =  2 
c(β-α)t
(t2-c)2    

so that 
 

 dx = 2 
c(β-α)t
(t2-c)2  dt  .          (6.6) 
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Our integral evaluation then becomes 
 

  ∫
 

 x dx R(x, a+bx+cx2 )  =  ∫
 

t(x) dt 2 
c(β-α)t
(t2-c)2   * R(

αt2- cβ
t2-c  , 

c(α-β)t
t2-c  )    

   where t(x) = a+bx+cx2 / (x-α)  = R /(x-α)  .      (6.7) 
 
Notice that there are no messy square roots anywhere in the dt integrand. The integrand is now a rational 
function in the variable t :  integrand = poly1(t)/poly2(t).  
 
As noted earlier, one may swap α ↔ β  to obtain the following alternative form,  
 

  ∫
 

 x dx R(x, a+bx+cx2 )  =  ∫
 

t(x) dt 2 
c(α-β)t
(t2-c)2   * R(

βt2- cα
t2-c  , 

c(β-α)t
t2-c  )   (6.8) 

   where t(x) = a+bx+cx2 / (x-β)  = R /(x-β)  . 
 
Example:  Let R(x, a+bx+cx2 ) = 1/ a+bx+cx2 . Then using (6.7),  
 

  ∫
 

 x dx  
1

a+bx+cx2 
  =  ∫

 

t(x) dt 2 
c(β-α)t
(t2-c)2  *  

t2-c
c(α-β)t    =  - 2 ∫

 

t(x) dt 
1

t2-c  

 

  = +
2
c 

 tanh-1(
t
c 

 )|t(x)   // using (5.8a) 

 

   =  
2
c 

 tanh-1(
x - β
x - α  )  .        (6.9) 

Thus we arrive at yet another form for our ∫dx/ R integral.  Maple verifies it as follows,  

 

 
 
which is just 1/ a+bx+cx2 . The result is clearly symmetric under α ↔ β, so one has 
 

  ∫
 

 x dx  
1

a+bx+cx2 
  =•    

2
c 

 tanh-1(
x - β
x - α  )   =•    

2
c 

 tanh-1(
x - α
x - β  )  .   (6.10) 

 
We leave it to the reader to find the constant by which these two forms differ from each other and from 
those forms presented earlier.  
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7. More forms for the integral of R-1/2 

 
Define 
 

 y ≡ 
2cx + b
4ac-b2 

  .          (7.1) 

 
We wish to use the following identity with the above y,  
 
 sinh-1y  = ln(y + y2+1 )    |y| < ∞   // Spiegel 8.55     (7.2) 
 
so we need to evaluate 
 

 y2 + 1  =  ( 
2cx + b
4ac-b2 

 )2 + 1  = 
(2cx+b)2

 4ac-b2  + 1  = 
(2cx+b)2+ 4ac-b2

 4ac-b2   =  
4c2x2 + 4cbx + b2+ 4ac-b2

 4ac-b2   

 

       = 
4c(cx2+bx +a)

 4ac - b2   = 
4cR

 4ac - b2  .       (7.3) 

 
Then 
 

 y + y2+1  = 
2cx + b
4ac-b2 

 + 
2 c R 

4ac-b2 
  =  

2cx + b + 2 c R 
4ac-b2 

  .   

 
Then from (7.2),  
 

 sinh-1( 
2cx + b
4ac-b2 

 )  =  ln ( 
2cx + b + 2 c R 

4ac-b2 
  )   =•    ln (2cx + b + 2 c R )     (7.4) 

 
where as usual we have thrown out a constant g(a,b,c).  Comparing this result to (4.9),  
 

  ∫
 

 x dx  
1

a+bx+cx2 
   =•    

1
c 

  ln [2 c R  + 2cx + b ] ,      (4.9) 

 
we may conclude that 
  

  ∫
 

 x dx  
1

a+bx+cx2 
   =•    

1
c 

  sinh-1(
2cx + b
4ac-b2 

 )      (7.5) 

 
giving a commonly appearing form for the integral valid for c > 0 and 4ac - b2 > 0.  
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Analytic Continuation.  Consider this z-plane showing complex vectors z and z-α  for |z| > α > 0,  
 

          (7.6) 
 
We are interested in the function f(z) = (z-α)r where 0 < r < 1. The function has a branch point at z = α 
and we draw the cut off to the left as shown in black. We declare that f(z) is real and positive for z > α, so 
we are viewing the "principle sheet" of our function. Angles θ and φ are phases of the vectors z and z-α, 
 
 z = |z|eiθ    and  (z-α) = |z-α| eiφ  .   (7.7) 
 
At point A, one has θ = 0, φ = 0, z > 0 and z-α > 0 so,   
 
 z = |z|ei0 = z   and   (z-α) =   |z-α|ei0 = (z-α) .  (7.8) 
 
At point B one has θ = +π, φ = +π, z < 0 and z-α < 0 so (z is just above the cut),   
 
 z = |z|eiπ = (-z)eiπ   and   (z-α) =   |z-α|eiπ = (α-z)eiπ 
so 
 zr = (-z)reiπr   and  (z-α)r = (α-z)r eiπr .    (7.9) 
 
For r = 1/2 the last line says 
 
 z  = -z eiπ/2 = + i -z   and  z-α  = α-z eiπ/2 = + i α-z  .    (7.10) 
 
Therefore at point B the phases of z  and z-α are the same, indicated by eiπ/2 = +i. If we move point 
B below the cut and redraw the picture so point B has θ = -π and φ = -π, both phases are -i instead of both 
+i. In either case the two phases are the same, and this fact follows from doing proper analytic 
continuation over a smooth path in the z-plane from z = A to z = B.  
 
Application. Assume a > 0 and let z = 4ac and α = b2. Then taking point B above the cut,  
 
 4ac  = +i -4ac     and  4ac-b2   = +i b2-4ac  
or 
 c  = +i -c    and  4ac-b2   = +i b2-4ac   .  (7.11) 
 
We can then analytically continue our integral (7.5) using these rules to get 
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  ∫
 

 x dx (1/ R)  =  (1/ c ) sinh-1 [ (2cx +b)/ 4ac-b2 ]  // (7.5) 

 

    = (1/[i -c  ])  sinh-1 [ (2cx +b)/(i b2-4ac )]  
 
    =  (-i)(1/ -c )  sinh-1 [ -i(2cx +b)/ b2-4ac ]  
 
    =  - (-i)(1/ -c )  sinh-1 [ i(2cx +b)/ b2-4ac ]   // Spiegel 8.64 
 
    = - i (-i)(1/ -c  )  sin-1 [ (2cx +b)/ b2-4ac ]   // Spiegel 8.93 
 

    = - 
1
-c 

 sin-1[ 
2cx +b
b2-4ac 

 ]  =  + 
1
-c 

 sin-1[ 
-2cx -b
b2-4ac 

 ]  ,      (7.12) 

 
giving forms valid for c < 0 and b2-4ac > 0. Next we use this relation  
 
 sin-1(z) = - cos-1(z) + π/2       // Spiegel 5.74     
 
       =•   - cos-1(z)          (7.13) 
 
to obtain two more forms,  
 

  ∫
 

 x dx (1/ R)   =•    + 
1
-c 

 cos-1[ 
2cx +b
b2-4ac 

 ]  =  - 
1
-c 

 cos-1[ 
-2cx -b
b2-4ac 

 ] .   (7.14) 

 
Trust but verify,  
 

  (7.15) 
 
In these last integrals, we started with a > 0, but the results can be continued to part of the range a < 0 
where we have  
 
 b2-4ac > 0     ⇒ b2+4a|c|  > 0 ⇒ 4a|c| > -b2      ⇒   
 
 a > -(b2/|c|) .           (7.16) 
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Goldstein Classical Mechanics 
 
In the discussion of orbits with an inverse-square force law, Goldstein (1950) on page 77 writes the 
second evaluation in (7.14) omitting the leading minus sign. This error is repeated on page 93 of the later 
2001 third edition of the book (Goldstein, Poole and Safko, all deceased), from which we quote, where 
a,b,c = α,β,γ ,  
 

       
 
This results in another sign error in (3.54), but as it turns out, this error makes no difference in the key 
final result (3.55) due to the fact that cos(θ-θ') = cos(θ'-θ). That final result is this.  
 

  
 
The inverse-square force law is F = -k/r2, a particle has mass m, energy E, and angular momentum l . This 
last result shows that the orbits are conic sections expressed in polar coordinates r,θ where the radical is 
the orbit eccentricity ε. For a sun-planet system, m,r,θ refer to an equivalent one-body problem where m 
is the reduced mass, and r,θ are relative to the center of mass.  
 
A summary of forms appearing in this document :      (7.17) 
 

      ∫
 

 x dx  
1
R 

        R = a + bx + cx2 

 

 1   =•    
1
c 

 ln (2cx + b + 2 c R )   // (4.9)  c > 0  

 

 2   =•   - 
1
c 

 ln (2cx + b - 2 c R )   // (4.10)  c > 0 

 

 3  =•   
1
c 

 ln (2cx +b )    // (4.14)  c > 0, b2-4ac = 0 

 

 4   =•   
1
c 

  ln [ 
 2cx + b + 2 c R 

4ac-b2 
  ]  // (1.8)  c > 0, b2-4ac < 0 

 

 5   =•   
2
c 

 tanh-1(
R + a  
x c 

 )   // (5.9)  c > 0, a > 0 

 

 6   =•   
2
c 

 tanh-1(
R - a  
x c 

 )   // (5.10)  c > 0, a > 0 
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 7   =•   
2
c 

 tanh-1( 

x - β
x - α  )   // (6.9)  c > 0,  α,β roots of R 

 

 8   =•   
1
c 

  ln [ 
x-α + x-β 
x-α - x-β 

  ]   // item 7 above with identity (5.11) 

  

 9  =•   
1
c 

  sinh-1( 

2cx + b
4ac-b2 

 )   // (7.5)  c > 0, b2-4ac < 0 

 

 10  =•  - 
1
-c 

 sin-1( 
2cx + b
b2-4ac 

 )   // (7.12)  c < 0, b2-4ac > 0 

 

 11  =•  + 
1
-c 

 cos-1( 
2cx + b
b2-4ac 

 )   // (7.14)  c < 0, b2-4ac > 0 

 

 12  =•  - 
1
-c 

 cos-1( 
-2cx - b
b2-4ac 

 )   // (7.14)  c < 0, b2-4ac > 0 

 
The evaluations 4, 9, 3, 10  appear in GR7 page 94,  
 

   (7.18) 

 
 

 
 
See also Spiegel 14.280 which, however, uses R = ax2+bx+c. Both Spiegel and GR7 present many 
integrals of the form xm ( R )n for m and odd n being various positive and negative integers.  
 
Footnote concerning TI above. Adrian Fedorovich Timofeev (1882-1954) led a complicated life in Russia 
and wrote a few non-mathematical books about it (e.g., My Prison Diary). 
 
http://adriantimofeev1.blogspot.com/2012/07/this-is-photos-from-life-in-1890-1915.html  
 
 

http://adriantimofeev1.blogspot.com/2012/07/this-is-photos-from-life-in-1890-1915.html�
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Appendix A:  About Euler's original paper  
 

Euler's study of integrals of the form ∫dx xn/ R appears in this paper,  

 
L. Euler, "Speculationes super formula integrali ∫ (xndx)/√(aa-2bx+cxx), ubi simul egregiae 
observationes circa fractiones continuas occurrunt", Acta Academiae Scientarum Imperialis 
Petropolitinae 1782, 1786, pp. 62-84.  

       or in English 
 

L. Euler, "Speculations concerning the integral formula ∫ (xndx)/√(aa-2bx+cxx), where at the same 
time exceptional observations about continued fractions occur", Transactions of the Imperial 
Academy of Sciences in St. Petersburg 1782, 1786, pp. 62-84.  

 
In 1775 Euler wrote about 60 (!) papers including the one above. The paper was formally presented in 
1782 (a year before his death) but was not was published until 1786. The original paper can be viewed in 
the Euler Archive,  
 
 http://eulerarchive.maa.org//  
 
by looking up Subject / Mathematics / Integration / index number 606.  
 
His paper does not actually use any of our substitutions A,B,C. Instead, he plants the seed of the idea and 
someone at some later time extracted the three substitutions from his work. Below we shall display parts 
of the original paper, but first it is helpful to describe what he is doing. Here is a long-winded 
interpretation of Section 1 of his paper :  
 
§. I.  Consider the quantity a2 - 2bx + cx2. Make the substitution,  
 

  x  =  
b+z

c   ⇒ z = cx - b  and dx =  
dz
c       (A.1) 

 
so that 
 
 (a2 - 2bx + cx2) =  a2 - 2b (b+z)/c + c(b+z)2/c2  =   (1/c2)[a2c2 - 2bc (b+z) + c(b+z)2] 
 
  =  (1/c2)[a2c2 - 2b2c- 2bcz + cb2+ 2cbz + cz2]  =  (1/c2)[a2c2 - b2c + cz2]   
 
  = (a2c - b2 + z2)/c  .   // no linear z term     (A.2) 
 
Then,     // Euler uses c = f2 but we keep it as c  
 

 ∫dx 
1

a2-2bx+cx2 
  =   ∫ 

dz
c   

c 
a2c - b2 + z2 

   =   
1
c 

  ∫ 
dz

a2c - b2 + z2 
 .    (A.3) 

 

http://eulerarchive.maa.org//�
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Euler's substitution (A.1) has not converted the integrand to a rational function R(t) of the form (1.2) as 
we did earlier with all the official "Euler substitutions". However, Euler was familiar with the following 
integral (having more or less invented the natural logarithm and e),  
 

 ∫ 
dz

A2+z2 
   =  ln [z + A2+z2 ] + constant 

 
so he continues the above,  
 

 
1
c 

 ∫ 
dz

a2c - b2 + z2 
   = 

1
c 

  ln [ 
 z + a2c - b2 + z2 

C   ]     (A.4) 

 
where C is a constant.  He then replaces z = cx - b and a2c - b2 + z2  = c a2-2bx+cx2 to get 
 

  ∫
 

 x dx 
1

a2-2bx+cx2 
  = 

1
c 

 ln [ 
 cx - b + c a2-2bx+cx2 

C   ]   c > 0  (A.5) 

and then          

  ∫
0

 x dx 
1

a2-2bx+cx2 
  =  

1
c 

 ln [ 
 cx - b + c a2-2bx+cx2 

-b+a c 
  ]  .  c > 0  (A.6) 

 
He next considers the case c < 0 (which he writes as c = - g2) and finds, 
 

  ∫
0

 x dx 
1

a2-2bx+cx2 
  =  

1
g sin-1 (

cx-b
b2 - a2c 

 )  +  
1
g sin-1 (

b
b2 - a2c 

 )  .    c < 0  (A.7) 

 
Comparison with GR7:  With a2→ a and b → -b/2 one has  a2 - 2bx + cx2 → a + bx + cx2  = R.   
Then (A.5) and (A.7) become 
 

 ∫dx 
1

a+bx+cx2 
  =  

1
c 

 ln [ 
 2cx + b + 2 c a+bx+cx2 

2C   ]  c > 0    (A.5)'  

 

 ∫dx 
1

a+bx+cx2 
  =  

1
g  sin-1 (

2cx +b
b2-4ac 

 )  c = - g2 < 0 .     (A.7') 

   
Eq. (A.5)' agrees with (7.18) line 1 (apart from an additive constant), and (A.7)' agrees with (7.18) line 4 
if we take g = - -c . Euler does not really define the meaning of his g when he writes c = -g2 , nor was the 
notion of analytic continuation much developed in 1775.  
 
 
Here then is the original of Section 1, taken from the Euler Archive noted above, annotated with our 
equation numbers and a few small repairs,  
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    (A.8) 
 
As was the custom of the time, the paper is written in Latin ("We begin with the simplest case, where n = 
0, and we seek an integral formula for...."). The letter v is u, the number 1 is I, and s in most non-final 
positions is written f, known as a "long s", a usage that was dropped after 1800.  Quadratic powers are 
written aa instead of a2, though higher powers are later written with exponents. A root expression  is 

written √(expression). The ln symbol is a large italic lower-case letter l, and Arcsin(α) is written A fin. α    
 
The Archive has this paper translated into German with clean typesetting (no English yet). One can only 
marvel at how printers of the day hand-typeset Euler's many equations for printing. The photocopy clips 
above and below are of modest quality, and we had to manually do some derotation of the text (Visio).  
 

As his paper title shows, Euler was in pursuit of the integral ∫dx xn/ a2-2bx+cx2  and in the first Section 

above he has handled the case n = 0. He goes on to make more substitutions to obtain the cases n = 
1,2,3...  Here is his entire Section 4 with a new substitution s = a2-2bx+cx2  - a to get the n = 1 integral 
expressed in terms of the n = 0 integral,  
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     (A.9)  
 

Note that Π ≡  ∫
 

 x dx/ a2-2bx+cx2 and then Δ ≡  ∫
 

 x=α dx/ a2-2bx+cx2  where α = (b± b2-a2c )/c is 

either root of a2-2bx+cx2 = 0. He does this to obtain the simple result ∫
 

 x dx x/ a2-2bx+cx2 = 
b
c Δ - 

a
c . 

 
Later Euler summarizes his results for n = 0,1,2,3 and 4 :  

(A.10) 
 
where I.3.5 means 1*3*5 = 15.  He then obtains a recursion relation 
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      (A.11) 
 
which appears in GR7 in a more general form (for R = a + bx + cx2),  
 

 
If in this GR7 integral we take n→0, m→n+1, a→a2 and b→ -2b so R→Q = a2-2bx+cx2 , we get 
 

  ∫ 
xn+1dx

Q 
  =   

xn

(n+1)c Q  –  
(2n+1)(-2b)

2(n+1)c    ∫ 
xndx

Q 
  – 

(n)a2

(n+1)c  ∫ 
xn-1dx

Q 
  

or 

 (n+1)c∫ 
xn+1dx

Q 
   =  (2n+1)b ∫ 

xndx
Q 

  – na2 ∫ 
xn-1dx

Q 
   +  xn Q     (A.12) 

 
which gives Euler's recursion result (A.11) to the letter.  
 
Euler next attempts to write a closed-form expression for the general case n = n with some partial success. 
The paper then ends with a long section on writing quantities as continued fractions, for example 
 

 
 

   (A.13) 
 
There are many pages showing such continued fractions and Euler seems to be fascinated with them. As 
the title says, this is the second topic of his paper,  
 
 "Speculations concerning the integral formula ∫ (xndx)/√(aa-2bx+cxx), where at the same time 
exceptional observations about continued fractions occur " 
 
Euler (1707-1783) was Swiss but moved to St. Petersburg in 1727, to Berlin in 1741, and finally back to 
St. Petersburg in 1766 where he wrote the above paper. His presence in Russia is probably the reason that 
the "Euler substitutions" are commonly associated with Russian sources like Piskunov. He had a prolific 
and eventful life in eventful times and is often ranked the greatest mathematician of all time.  
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Appendix B.  Summary of the three Euler substitutions  
 
____________________________________________________________________________________ 
 
Substitution A  t ± c x  = a+bx+cx2        (B.1) 
 

  ∫
 

 x dx R(x, a+bx+cx2 )  =  ∫
 

t(x) dt  2 
 - c t2 + bt - a c  

(b - 2 c t )2 
 *  R( 

t2-a
b - 2 c t

 , 
- c t2 + bt - c a 

b - 2 c t
 ) 

   where  t(x)   =  a+bx+cx2  - c x  .       (4.7) 
 

  ∫
 

 x dx R(x, a+bx+cx2 )  =  ∫
 

t(x) dt  2 
 c t2 + bt + a c  

(b + 2 c t )2 
 * R( 

t2-a
b + 2 c t

 , 
c t2 + bt + c a 

b + 2 c t
 ) 

   where  t(x)   =  a+bx+cx2  + c x   .       (4.8) 
 
____________________________________________________________________________________ 
 
Substitution B  xt ± a   = a+bx+cx2        (B.2) 
 

  ∫
 

 x dx R(x, a+bx+cx2 )  =  ∫
 

t(x) dt  2 
a t2 - bt + a c

(c-t2)2   * R( 
2 a t - b

c-t2  , 
a t2 - bt + a c

c-t2  ) 

   where  t(x)   =  ( a+bx+cx2  - a ) / x  .       (5.7) 
 

  ∫
 

 x dx R(x, a+bx+cx2 )  =  ∫
 

t(x) dt  2 
- a t2 - bt - a c

(c-t2)2   * R( 
-2 a t - b

c-t2  , 
- a t2 - bt - a c

c-t2  ) 

   where  t(x)   =  ( a+bx+cx2  + a ) / x  .       (5.8) 
 
____________________________________________________________________________________ 
 

Substitution C :  t = c  (
x - β
x - α  )±1  where a+bx+cx2 = c(x-α)(x-β)    (B.3) 

 

  ∫
 

 x dx R(x, a+bx+cx2 )  =  ∫
 

t(x) dt 2 
c(β-α)t
(t2-c)2   * R(

αt2- cβ
t2-c  , 

c(α-β)t
t2-c  )    

   where t(x) = a+bx+cx2 / (x-α)  = R /(x-α)  .      (6.7) 
 

  ∫
 

 x dx R(x, a+bx+cx2 )  =  ∫
 

t(x) dt 2 
c(α-β)t
(t2-c)2   * R(

βt2- cα
t2-c  , 

c(β-α)t
t2-c  )   (6.8) 

   where t(x) = a+bx+cx2 / (x-β)  = R /(x-β)  . 
___________________________________________________________________________________ 
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